Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation.

نویسندگان

  • C J van Dalen
  • C C Winterbourn
  • R Senthilmohan
  • A J Kettle
چکیده

Myeloperoxidase is a heme enzyme of neutrophils that uses hydrogen peroxide to oxidize chloride to hypochlorous acid. Recently, it has been shown to catalyze nitration of tyrosine. In this study we have investigated the mechanism by which it oxidizes nitrite and promotes nitration of tyrosyl residues. Nitrite was found to be a poor substrate for myeloperoxidase but an excellent inhibitor of its chlorination activity. Nitrite slowed chlorination by univalently reducing the enzyme to an inactive form and as a consequence was oxidized to nitrogen dioxide. In the presence of physiological concentrations of nitrite and chloride, myeloperoxidase catalyzed little nitration of tyrosyl residues in a heptapeptide. However, the efficiency of nitration was enhanced at least 4-fold by free tyrosine. Our data are consistent with a mechanism in which myeloperoxidase oxidizes free tyrosine to tyrosyl radicals that exchange with tyrosyl residues in peptides. These peptide radicals then couple with nitrogen dioxide to form 3-nitrotyrosyl residues. With neutrophils, myeloperoxidase-dependent nitration required a high concentration of nitrite (1 mM), was doubled by tyrosine, and increased 4-fold by superoxide dismutase. Superoxide is likely to inhibit nitration by reacting with nitrogen dioxide and/or tyrosyl radicals. We propose that at sites of inflammation myeloperoxidase will nitrate proteins, even though nitrite is a poor substrate, because the co-substrate tyrosine will be available to facilitate the reaction. Also, production of 3-nitrotyrosine will be most favorable when the concentration of superoxide is low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione.

During inflammatory events, neutrophils and platelets interact to release a variety of mediators. Neutrophils generate superoxide and hydrogen peroxide, and also discharge the haem enzyme myeloperoxidase. Among numerous other mediators, platelets liberate serotonin (5-hydroxytryptamine), which is a classical neurotransmitter and vasoactive amine that has significant effects on inflammation and ...

متن کامل

The physiological role and pharmacological potential of nitric oxide in neutrophil activation.

There is contention over whether human neutrophils produce physiologically significant levels of nitric oxide (NO) during inflammatory reactions. Nevertheless, regardless of its cell source, NO does exert regulatory effects on neutrophil function. Depending on experimental conditions, NO can either inhibit or enhance neutrophil activation, in both cases probably acting through cyclic GMP. The e...

متن کامل

Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas' disease.

In this study, we investigated whether inflammatory responses contribute to oxidative/nitrosative stress in patients with Chagas' disease. We used three tests (enzyme-linked immunosorbent assay, immuno-flow cytometry, and STAT-PAK immunochromatography) to screen human serum samples (n = 1,481) originating from Chiapas, Mexico, for Trypanosoma cruzi-specific antibodies. We identified 121 subject...

متن کامل

Inhibition of hypochlorous acid-induced cellular toxicity by nitrite.

Chronic inflammation results in increased nitrogen monoxide (.NO) formation and the accumulation of nitrite (NO(2-)). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels....

متن کامل

Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation

Myeloperoxidase is an inflammatory enzyme that generates reactive hypochlorous acid in the presence of hydrogen peroxide and chloride ion. However, this enzyme also uses bromide ion or thiocyanate as a substrate to form hypobromous or hypothiocyanous acid, respectively. These species play important roles in host defense against the invasion of microorganisms. In contrast, these enzyme products ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 16  شماره 

صفحات  -

تاریخ انتشار 2000